If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=100-225Y^2
We move all terms to the left:
-(100-225Y^2)=0
We get rid of parentheses
225Y^2-100=0
a = 225; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·225·(-100)
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{90000}=300$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-300}{2*225}=\frac{-300}{450} =-2/3 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+300}{2*225}=\frac{300}{450} =2/3 $
| 8(x+7)=56 | | 295=72-w | | 8+22x+6x+4=180 | | b+18=50 | | 2x+36=86 | | 12c-8c-3c+2=17 | | x+x+40+x+40+220=1440 | | j+13/4=5 | | 9(x+13)-12=24 | | 1.5y=-2/1.5+18/1.5 | | 12÷x-1=2 | | 10+8=5x+23 | | p/5-9=23 | | 55=23+8w | | 4(x+9)+18=42 | | 2(x-2)-18=-14 | | 15c-14c+4=18 | | 0.2x-5=11 | | t+25/7=5 | | a-10=18 | | 1/2(b+14)=1/2(b+14) | | q/9+34=39 | | 1/2(b+14)=(b+14)2 | | 18v-15v+5v=16 | | 0.6x+3.6=10.2 | | 9x+6.7=18.4 | | 95=4g+31 | | 9+d4=23 | | 8j-8j+j=13 | | 0.6x-3.2=4* | | 12j-6j-j-j=8 | | 2.2d=40.8 |